RapidCanvas Docs
  • Welcome
  • GETTING STARTED
    • Quick start guide
    • Introduction to RapidCanvas
    • RapidCanvas Concepts
    • Accessing the platform
  • BASIC
    • Projects
      • Projects Overview
        • Creating a project
        • Reviewing the Projects listing page
        • Duplicating a Project
        • Modifying the project settings
        • Deleting Project(s)
        • Configuring global variables at the project level
        • Working on a project
        • Generating the about content for the project
        • Generating AI snippets for each node on the Canvas
        • Marking & Unmarking a Project as Favorite
      • Canvas overview
        • Shortcut options on canvas
        • Queuing the Recipes
        • Bulk Deletion of Canvas Nodes
        • AI Guide
      • Recipes
        • AI-assisted recipe
        • Rapid model recipe
        • Template recipe
        • Code Recipe
        • RAG Recipes
      • Scheduler overview
        • Creating a scheduler
        • Running the scheduler manually
        • Managing schedulers in a project
        • Viewing the schedulers in a project
        • Viewing the run history of a specific scheduler
        • Publishing the updated data pipeline to selected jobs from canvas
        • Fetching the latest data pipeline to a specific scheduler
        • Comparing the canvas of the scheduler with current canvas of the project
      • Predictions
        • Manual Prediction
        • Prediction Scheduler
      • Segments and Scenarios
      • DataApps
        • Model DataApp
        • Project Canvas Datasets
        • Custom Uploaded Datasets
        • SQL Sources
        • Documents and PDFs
        • Prediction Service
        • Scheduler
        • Import DataApp
    • Connectors
      • Importing dataset(s) from the local system
      • Importing Text Files from the Local System
      • Connectors overview
      • Connect to external connectors
        • Importing data from Google Cloud Storage (GCS)
        • Importing data from Amazon S3
        • Importing data from Azure Blob
        • Importing data from Mongo DB
        • Importing data from Snowflake
        • Importing data from MySQL
        • Importing data from Amazon Redshift
        • Importing data from Fivetran connectors
    • Workspaces
      • User roles and permissions
    • Artifacts & Models
      • Adding Artifacts at the Project Level
      • Adding Models at the Project Level
      • Creating an artifact at the workspace level
      • Managing artifacts at the workspace level
      • Managing Models at the Workspace Level
      • Prediction services
    • Environments Overview
      • Creating an environment
      • Editing the environment details
      • Deleting an environment
      • Monitoring the resource utilization in an environment
  • ADVANCED
    • Starter Guide
      • Quick Start
    • Setup and Installation
      • Installing and setting up the SDK
    • Helper Functions
    • Notebook Guide
      • Introduction
      • Create a template
      • Code Snippets
      • DataApps
      • Prediction Service
      • How to
        • How to Authenticate
        • Create a new project
        • Create a Custom Environment
        • Add a dataset
        • Add a recipe to the dataset
        • Manage cloud connection
        • Code recipes
        • Display a template on the UI
        • Create Global Variables
        • Scheduler
        • Create new scenarios
        • Create Template
        • Use a template in a flow notebook
      • Reference Implementations
        • DataApps
        • Artifacts
        • Connectors
        • Feature Store
        • ML model
        • ML Pipeline
        • Multiple Files
      • Sample Projects
        • Model build and predict
  • Additional Reading
    • Release Notes
      • April 21, 2025
      • April 01, 2025
      • Mar 18, 2025
      • Feb 27, 2025
      • Jan 27, 2025
      • Dec 26, 2024
      • Nov 26, 2024
      • Oct 24, 2024
      • Sep 11, 2024
        • Aug 08, 2024
      • Aug 29, 2024
      • July 18, 2024
      • July 03, 2024
      • June 19, 2024
      • May 30, 2024
      • May 15, 2024
      • April 17, 2024
      • Mar 28, 2024
      • Mar 20, 2024
      • Feb 28, 2024
      • Feb 19, 2024
      • Jan 30, 2024
      • Jan 16, 2024
      • Dec 12, 2023
      • Nov 07, 2023
      • Oct 25, 2023
      • Oct 01, 2024
    • Glossary
Powered by GitBook
On this page
  • Add Global variables
  • Parameters
  1. ADVANCED
  2. Notebook Guide
  3. How to

Create Global Variables

from utils.rc.client.requests import Requests
from utils.rc.client.auth import AuthClient

from utils.rc.dtos.global_variable import GlobalVariable

import logging

logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
Requests.setRootHost("https://staging.dev.rapidcanvas.net/api/") 
AuthClient.setToken() #you can find your token in RapidCanvas UI under tools/token

Add Global variables

Global variables are stored as key value pairs at the project level and the name of the variable can be referred to using the “@variable name” notion to pass the corresponding value.

Global variables can be called as part of your pipeline.

globalVariable = GlobalVariable(
    name="global_variable",
    project_id=project.id,
    type="string",
    value="value of the variable" #this value will fetched during pipeline execution
)
globalVariable.create()

Example code with data looks like below:

globalVariable = GlobalVariable(
    name="module_name",
    project_id='3f3e09a9-8081-41a1-aded-0616b87c92fa',
    type="string",
    value="model_output" #this value will fetched during pipeline execution
)
globalVariable.create()

Parameters

Parameter name

Parameter description

Data type

Required

Example

name

This is the name of the key in the key value pair of the global variable.

String

Yes

model_name

project

The project ID to which you want to add the global variables.

String

No

'3f3e09a9-8081-41a1-aded-0616b87c92fa'

type

The data type of the global variable. It is set to string.

String

Yes

string

value

The value assigned to the key. The value is used during the data pipeline execution to store models.

string

Yes

model_default

PreviousDisplay a template on the UINextScheduler

Last updated 1 month ago