Cumsum
This transform calculates the cumulative sum for each value in the column. It sums previous value to the current value in the column.
tags: [“EDA”]
Parameters
The table gives a brief description about each parameter in Cumsum transform.
- Name:
By default, the transform name is populated. You can also add a custom name for the transform.
- Input Dataset:
The file name of the input dataset. You can select the dataset that was uploaded from the drop-down list. (Required: True, Multiple: False)
- Output Dataset:
The file name with which the output dataset is created after performing the cumulative sum transform on the input dataset. (Required: True, Multiple: False)
The sample input for this transform looks as below:

The output after running the Cumsum transform on the dataset appears as below:

How to use it in Notebook
The following is the code snippet you must use in the Jupyter Notebook editor to run the Cumsum transform:
template=TemplateV2.get_template_by('Cumsum')
recipe_Cumsum= project.addRecipe([car_data, employee_data, temperature_data, only_numeric], name='Cumsum')
transform=Transform()
transform.templateId = template.id
transform.name='Cumsum'
transform.variables = {
'input_dataset':'car',
'output_dataset':'car_cumsum'}
recipe_Cumsum.add_transform(transform)
recipe_Cumsum.run()
Requirements
pandas